$F_{0}(\pi)=S_{2}(1+r)$

Equity Investments

Cheat Sheets

- 365 V

Equity Investments

MARKET ORGANIZATION AND STRUCTURE

Initial Margin Requirement	$\text { Initial Margin Requirement }=\frac{\text { Value of Equity Position }}{\text { Value of Investment Position }}$		
Leverage Rati	$\text { Leverage ratio }=\frac{1}{\text { Initial Margin Requirement }}$		$\mathbf{1}=100$ Initial requir
Margin Call P	ice Margin call price $=P_{0}\left(\frac{1-\text { Initial margin requirement }}{1-\text { Maintenance margin requirement }}\right)$		
	Option Positions and their Associated Underlying Risk Exposure		
	Type of Option	Option Position	Exposure to Underlying Risk
	Call	Long	Long
	Call	Short	Short
	Put	Long	Long
	Put	Short	Short

SECURITY MARKET INDEXES

Value of Price
Return Index

$$
\mathbf{V}_{\text {PRI }}=\frac{\sum_{i=1}^{N} n_{i} P_{i}}{D}
$$

$\mathbf{V}_{\text {PRI }}=$ Value of the price return index
$\mathbf{n}_{\mathrm{i}}=$ Number of units of constituent security i held in the index portfolio
$\mathbf{N}=$ Number of constituent securities in the index
$\mathbf{P}_{\mathrm{i}}=$ Unit price of constituent security i
D = Value of the divisor

Equity Investments

SECURITY MARKET INDEXES

Total Return of an Index
$\mathbf{T R}_{\mathbf{I}}=\frac{\mathrm{V}_{\text {PRI1 }}-\mathrm{V}_{\text {PRIO }}+I}{V_{\text {PRIO }}}=\sum_{i=1}^{N} w_{i} T R_{i}=\sum_{i=1}^{N} w_{i}\left(\frac{P_{1 i}-P_{0 i}+I n c_{i}}{P_{0 i}}\right)$
$\mathbf{T R}_{\mathbf{1}}=$ Total return of the index portfolio
$\mathbf{V}_{\text {PR11 }}=$ Value of the price return index at the end of the period
$\mathbf{V}_{\text {PRIO }}=$ Value of the price return index at the beginning of the period
$\mathbf{I n c}_{\mathbf{i}}=$ Total income (dividends and/or interest) from all securities in the index held over the period
TR $_{\mathbf{i}}=$ Total return of constituent security i
$\mathbf{w}_{\mathbf{i}}=$ Weight of security i (the fraction of the index portfolio allocated to security i)
$\mathbf{N}=$ Number of securities in the index

Value of Price Return Index
(Multiple periods)

$$
\left.\begin{array}{rl}
\mathbf{V}_{\text {PRIO }}= & \text { Value of the price return } \\
\text { index at inception }
\end{array}\right\}
$$

$\mathbf{w}_{\mathbf{i}}=$ Weight of security i
$\mathbf{P}_{\mathrm{i}}=$ Share price of security i
$\mathbf{N}=$ Number of securities in the index
$\mathbf{w}_{\mathbf{i}}=$ Weight of security i
$\mathbf{N}=$ Number of securities in the index
$\mathbf{w}_{\mathrm{i}}^{\mathrm{E}}=\frac{1}{\mathrm{~N}}$
$\mathbf{w}_{i}^{p}=\frac{P_{i}}{\sum_{i=1}^{N} P_{i}}$

Market-capitalization
Weighting

$$
\mathbf{w}_{i}^{M}=\frac{Q_{i} P_{i}}{\sum_{j=1}^{N} Q_{j} P_{j}}
$$

$\mathbf{w}_{\mathrm{i}}=$ Weight of security i
$\mathbf{Q}_{\mathbf{i}}=$ Number of shares outstanding of security i
$\mathbf{P}_{\mathrm{i}}=$ Share price of security i
$\mathbf{N}=$ Number of securities in the index

Equity Investments

SECURITY MARKET INDEXES

Float-adjusted Marketcapitalization Weighting
$\mathbf{w}_{i}^{M}=\frac{f_{i} Q_{i} P_{i}}{\sum_{j=1}^{N} f_{i} Q_{j} P_{j}}$
$\mathbf{w}_{i}^{F}=\frac{F_{i}}{\sum_{j=1}^{N} F_{j}}$
$R O E_{t}=\frac{N I_{t}}{\text { Average } B V E_{t}}=\frac{N I_{t}}{\left(B V E_{t}+B V E_{t-1}\right) / 2}$
$\mathbf{f}_{\mathrm{i}}=$ Fraction of shares outstanding in the market float
$\mathbf{w}_{\mathrm{i}}=$ Weight of security i
$\mathbf{Q}_{\mathbf{i}}=$ Number of shares outstanding of security i
$\mathbf{P}_{\mathrm{i}}=$ Share price of security i
$\mathbf{N}=$ Number of securities in the index
$\mathbf{w}_{\mathrm{i}}=$ Weight of security i
$\mathrm{F}_{\mathrm{i}}=$ Fundamental size measure of company i

Return on Equity
$\mathbf{V}_{0}=$ value of a share of stock today ($\mathrm{t}=0$)
$V_{0}=\sum_{t=1}^{n} \frac{D_{t}}{(1+r)^{t}}+\frac{P_{n}}{(1+r)^{n}}$
Dividend Discount Model

Free Cash Flow to Equity
FCFE = CFO - FCInv + Net borrowing
$\mathbf{N I}_{\mathrm{t}}=$ net income in year t
$\mathrm{BVE}_{\mathrm{t}}=$ beginning total assets minus beginning total liabilities
$\mathbf{D}_{\mathbf{t}}=$ expected dividend in year
t (at the end of the year)
$r=$ required rate of return
$\mathbf{P}_{1}=$ the expected price/share
at $\mathrm{t}=1$

FCInv = Fixed Capital investment

CFO = Cash Flow from
Operations
Net Borrowing = amount
borrowed minus amount repaid
$V_{0}=\sum_{t=1}^{\infty} \frac{F C F E_{t}}{(1+r)^{t}}$
FCFE = Free Cash Flow to Equity
$r=$ Required rate of return

Equity Investments

SECURITY MARKET INDEXES

Float-adjusted Marketcapitalization Weighting
$\mathbf{k}_{\mathbf{i}}=\mathrm{R}_{\mathrm{f}}+\beta_{\mathrm{i}}\left[E\left(\mathrm{R}_{\mathrm{m}}\right)-\mathrm{R}_{\mathrm{f}}\right]$
$\mathbf{k}_{\mathbf{i}}=$ The required rate of return $\left(\mathrm{k}_{\mathrm{i}}\right)$
for security i
$\boldsymbol{\beta}_{\mathrm{i}}=$ The return sensitivity of
stock \mathbf{i} to changes in the market return
$\mathbf{E}\left(\mathbf{R}_{\mathrm{m}}\right)-\mathbf{R}_{\mathrm{f}}=$ The expected market
risk premium
$\mathbf{E}\left(\mathbf{R}_{\mathrm{m}}\right)=$ The expected return on
the market
$\mathbf{R}_{\mathrm{f}}=$ Risk-free rate

Intrinsic Value of
Preferred Stock
$\mathbf{D}_{\mathrm{t}}=$ Expected dividend in year t
(at the end of the year)
$r=$ Required rate of return
$\mathrm{V}_{0}=$ Value of a share of stock today, at $\mathrm{t}=0$
$\mathrm{D}_{\mathrm{o}}=$ The current stock
dividend
$r=$ Required rate of return on the stock
g = Constant dividend growth rate
$\frac{\mathbf{D}}{\text { EPS }}=$ Dividend payout ratio
ROE = Return on Equity
EPS = Earnings per Share

Dividend Growth Rate

$$
g=\left(1-\frac{D}{E P S}\right) \times R O E
$$

$\mathbf{g}_{\mathrm{s}}=$ Short-term growth rate

Two-stage Dividend Discount Model
$V_{0}=\sum_{t=1}^{n} \frac{D_{0}\left(1+g_{s}\right)^{t}}{(1+r)^{t}}+\frac{V_{n}}{(1+r)^{n}}$

$$
\begin{aligned}
& V_{n}=\frac{D_{n}+1}{r-g_{L}} \\
& D_{n+1}=D_{0}\left(1+g_{S}\right)^{n}\left(1+g_{L}\right)
\end{aligned}
$$

$r=$ Required rate of return

Equity Investments

SECURITY MARKET INDEXES

Justified Forward
P/E
$\frac{P_{0}}{E_{1}}=\frac{D_{1 /} E_{1}}{r-g}=\frac{p}{r-g}$
$\mathbf{p}=$ Expected dividend payout ratio
$r=$ Required rate of return
$\mathrm{g}=$ Expected dividend growth rate

Helps investors assess the relative value of a company's stock.

The price that investors are willing to pay per \$1 of sales

The price an investor needs to invest to obtain \$1 of a
company's cash flow.

Price/Cash Flow
(P/CF)

Price/Sales (P/S) ratio
$\mathrm{P} / \mathrm{S}=\frac{\text { Price per share }}{\text { Sales per share }}$

Price/Cash Flow $(P / C F)=\frac{\text { Share price }}{\text { Cash flow per share }}$

Price $/$ Book Ratio $=\frac{\text { Market price per share }}{\text { Book value per share }}$
$\mathrm{EV} / \mathrm{EBITDA}=\frac{\text { Enterprise value }}{\text { Earnings before interest, } \text { taxes, depreciation, and amortization }(\text { EBITDA })}$
EV (Enterprise value)
$=$ Market value of equity + Market value of debt

+ Market value of preferred stock - Cash and cash equivalents

Master the Finance Skills Necessary to Succeed. Now at 60\% OFF!

Become an expert in financial reporting, accounting, analysis, or modeling with our comprehensive training program.

Learn from industry-leading instructors and gain practical skills to advance your career.
(C) Build your knowledge with self-paced courses and enjoy the flexibility of online learning.
\& Validate your skills with exams and certificates demonstrating your expertise to potential employers.

固 Stand out in the job market with a strong resume created with our resume builder.

Save 60\% on an annual plan from the online learning program that helped more than $\mathbf{2}$ million people advance their careers.

Start learning now

Email: team@365financialanalyst.com

