$F_{a}(T) = S_{a}(1 + r)^{7}$

Equity Investments

Cheat Sheets

MARKET ORGANIZATION AND STRUCTURE

SECURITY MARKET INDEXES

365

Short

Value of Price Return Index

$$I_{PRI} = \frac{\sum_{i=1}^{N} n_i P_i}{D}$$

Price Return of an Index

$$\mathbf{PR}_{I} = \frac{V_{PRI0} - V_{PRI0}}{V_{PRI0}} = \sum_{i=1}^{N} w_{i} PR_{i} = \sum_{i=1}^{N} w_{i} \left(\frac{P_{i1} - P_{i0}}{P_{i0}}\right)$$

Put

V_{PRI} = Value of the price return index
 n_i = Number of units of constituent security *i* held in the index portfolio
 N = Number of constituent securities in the index
 P_i = Unit price of constituent security *i* D = Value of the divisor

Short

- V_{PRI1} = Value of the price return index at the end of the period
- V_{PRIO} = Value of the price return index at the beginning of the period
- **PR**_i = Price return of constituent security *i*
- **N** = Number of individual securities in the index
- w_i = Weight of security *i* (the fraction of the index portfolio allocated to security *i*)
- **P**_{i1} = Price of constituent security i at the end of the period
- P_{i0} = Price of constituent security i at the beginning of the period

SECURITY MARKET INDEXES

Total Return of an Index $\mathbf{TR}_{I} = \frac{V_{PRI1} - V_{PRI0} + I}{V_{PRI0}} = \sum_{i=1}^{N} w_{i} \mathbf{TR}_{i} = \sum_{i=1}^{N} w_{i} \left(\frac{P_{1i} - P_{0i} + Inc_{i}}{P_{0i}} \right)$ $\mathbf{TR}_{I} = \text{Total return of the index portfolio}$ $V_{PRI0} = \text{Value of the price return index at the end of the period}$ $\mathbf{Inc}_{i} = \text{Total income (dividends and/or interest) from all securities in the index held over the period}$ $\mathbf{TR}_{i} = \text{Total return of constituent security } i$ $\mathbf{W}_{i} = \text{Weight of security } i \text{ (the fraction of the index portfolio)}$ $\mathbf{N} = \text{Number of securities in the index}$		
Value of Price Return Index (Multiple periods)	$\mathbf{V}_{PRIT} = \mathbf{V}_{PRI0} (1 + PR_{11})(1 + PR_{12}) \dots (1 + PR_{1T})$	V_{PRIO} = Value of the price return index at inception V_{PRIT} = Value of the price index at time <i>t</i> PR_{IT} = Price return on the index over period <i>t</i> , <i>t</i> = 1, 2,, <i>T</i>
Value of Total Return Index (Multiple periods)	$\mathbf{V}_{\text{TRIT}} = \mathbf{V}_{\text{TRIO}} (1 + \text{TR}_{11})(1 + \text{TR}_{12}) \dots (1 + \text{TR}_{1T})$	V_{TRID} = Value of the index at inception V_{TRIT} = Value of the total return index at time t TR_{IT} = Total return on the index over period t, t = 1, 2,, T
Price Weighting	$\mathbf{w}_{i}^{P} = \frac{P_{i}}{\sum_{i=1}^{N} P_{i}}$	 w_i = Weight of security <i>i</i> P_i = Share price of security <i>i</i> N = Number of securities in the index
Equal Weighting	$\mathbf{w}_{i}^{E} = \frac{1}{N}$	 w_i = Weight of security <i>i</i> N = Number of securities in the index
Market-capitalization Weighting	$\mathbf{w}_{i}^{M} = \frac{Q_{i}P_{i}}{\sum_{j=1}^{N} Q_{j}P_{j}}$	 w_i = Weight of security <i>i</i> Q_i = Number of shares outstanding of security <i>i</i> P_i = Share price of security <i>i</i> N = Number of securities in the index

365 √

SECURITY MARKET INDEXES

Float-adjusted Market- capitalization Weighting	$\mathbf{w}_{i}^{M} = \frac{f_{i}Q_{i}P_{i}}{\sum_{j=1}^{N}f_{i}Q_{j}P_{j}}$	 f_i = Fraction of shares outstanding in the market float w_i = Weight of security <i>i</i> Q_i = Number of shares outstanding of security <i>i</i> P_i = Share price of security <i>i</i> N = Number of securities in the index
Fundamental Weighting	$\mathbf{w}_{i}^{F} = \frac{F_{i}}{\sum_{j=1}^{N} F_{j}}$	 w_i = Weight of security <i>i</i> F_i = Fundamental size measure of company i
Return on Equity	$ROE_t = \frac{NI_t}{Average \ BVE_t} = \frac{NI_t}{(BVE_t + BVE_{t-1})/2}$	 NI_t = net income in year t BVE_t = beginning total assets minus beginning total liabilities
Dividend Discount Model	$V_0 = \sum_{t=1}^n \frac{D_t}{(1+r)^t} + \frac{P_n}{(1+r)^n}$	<pre>V₀ = value of a share of stock today (t = 0) D_t = expected dividend in year t (at the end of the year) r = required rate of return P₁ = the expected price/share at t = 1</pre>
Free Cash Flow to Equity	FCFE = CFO – FCInv + Net borrowing	FCINV = Fixed Capital investment CFO = Cash Flow from Operations Net Borrowing = amount borrowed minus amount repaid
FCFE Mode	$V_0 = \sum_{t=1}^{\infty} \frac{FCFE_t}{(1+r)^t}$	FCFE = Free Cash Flow to Equity r = Required rate of return

365√

SECURITY MARKET INDEXES

Float-adjusted Market- capitalization Weighting	$\mathbf{k}_{i} = R_{f} + \beta_{i} [E(R_{m}) - R_{f}]$	\mathbf{k}_i = The required rate of return (k,) for security i $\boldsymbol{\beta}_i$ = The return sensitivity of stock i to changes in the market return $\mathbf{E}(\mathbf{R}_m) - \mathbf{R}_f$ = The expected market risk premium $\mathbf{E}(\mathbf{R}_m)$ = The expected return on the market \mathbf{R}_f = Risk-free rate
Intrinsic Value of Preferred Stock	$V_0 = \frac{D_t}{r}$	D _t = Expected dividend in year t (at the end of the year) r = Required rate of return
Gordon Growth Model	$V_0 = \frac{D_0(1+g)}{r-g} = \frac{D_1}{r-g}$	 V₀ = Value of a share of stock today, at t = 0 D₀ = The current stock dividend r = Required rate of return on the stock g = Constant dividend growth rate
Dividend Growth Rate	$g = \left(1 - \frac{D}{EPS}\right) \times ROE$	DEPSEPS= Dividend payout ratioROE= Return on EquityEPS= Earnings per Share
Two-stage Dividend Discount Model	$V_{0} = \sum_{t=1}^{n} \frac{D_{0}(1+g_{s})^{t}}{(1+r)^{t}} + \frac{V_{n}}{(1+r)^{n}}$ $V_{n} = \frac{D_{n}+1}{r-g_{L}}$ $D_{n+1} = D_{0}(1+g_{s})^{n}(1+g_{L})$	g _s = Short-term growth rate r = Required rate of return

365

SECURITY MARKET INDEXES

Justified Forward P/E	$\frac{P_0}{E_1} = \frac{D_1/E_1}{r-g} = \frac{p}{r-g}$	 p = Expected dividend payout ratio r = Required rate of return g = Expected dividend growth rate
Price/Book Ratio	$Price/Book \ Ratio = \frac{Market \ price \ per \ share}{Book \ value \ per \ share}$	Helps investors assess the relative value of a company's stock.
Price/Sales (P/S) ratio	$P/S = \frac{Price \text{ per share}}{Sales \text{ per share}}$	The price that investors are willing to pay per \$1 of sales
Price/Cash Flow (P/CF)	$Price/Cash Flow (P/CF) = \frac{Share \ price}{Cash \ flow \ per \ share}$	The price an investor needs to invest to obtain \$1 of a company's cash flow.
EV/EBITDA Ratio	EV/EBITDA = EV/EBITDA = EV/EBITDA = EV (Enterprise value) = Market value of equity + Market value of debt + Market value of preferred stock - Cash and cash equivalents	

Master the Finance Skills Necessary to Succeed. Now at 60% OFF!

Become an expert in financial reporting, accounting, analysis, or modeling with our **comprehensive training program**.

- Learn from industry-leading instructors and gain practical skills to advance your career.
- Build your knowledge with self-paced courses and enjoy the flexibility of online learning.
- Q Validate your skills with exams and certificates demonstrating your expertise to potential employers.
- Stand out in the job market with a strong resume created with our resume builder.

Save 60% on an annual plan from the online learning program that helped more than **2 million people** advance their careers.

Start learning now

30-day money-back guarantee

 $F_{0}(T) = S_{0}(1 + r)^{2}$

Email: team@365financialanalyst.com

