$F_{a}(T) = S_{a}(1 + r)^{2}$

Portfolio Management

Cheat Sheets

PORTFOLIO MANAGEMENT: AN OVERVIEW

Diversification ratio	Diversification ratio = $\frac{\sigma \text{ of }}{\sigma}$	f equally weighted portfolio of n securities o of single security selected at random		
		σ = Volatility (Standard deviation)		
Net asset value per share	Net asset value per share =	Fund Assets - Fund Liabilities Number of Shares Outstanding		
PORTFOLIO RISK AND RETURN: PART I				
Holding Period Return (HPR) No cash flows	HPR = Ending value - Begin Beginning val	ning value lue		
Holding Period Return (HPR) Cash flows occur at the end of the period	HPR = Ending Beginning + value value + Beginning va	$\frac{\text{Cash flows}}{\text{received}} = \frac{P_1 - P_0 + D_1}{\text{Beginning value}}$		
Holding Period Return (HPR) Multiple years	HPR = [(1 + R ₁) x (1 + R ₂)] - 1	 R₁ = Holding period return in year 1 R₂ = Holding period return in year 2 		
Arithmetic mean return	$\overline{\mathbf{R}}_{i} = \frac{R_{i1} + R_{i2} + \dots + R_{iT-1} + R_{iT}}{T}$	$= \frac{1}{T} \sum_{t=1}^{T} R_{it}$ $\overline{R}_{i} = \text{Arithmetic mean return}$ $R_{it} = \text{Return in period } t$ $T = \text{Total number of periods}$		
Geometric mean return $\overline{\mathbf{R}}_{gi} = \sqrt{(1 + R_{i1}) \times (1 + R_{i2}) \dots \times (1 + R_{i,T-1}) \times (1 + R_{i,T})} - 1 = \sqrt{T} \sqrt{T} \prod_{t=1}^{T} (1 + R_{it}) - 1$				
		R _{it} = Return in period t T = Total number of periods		

365

PORTFOLIO RISK AND RETURN: PART I

Internal Rate of Return (IRR)	$\sum_{t=0}^{N} \frac{CF_t}{(1 + IRR)^t} = 0$	t = Number of periods CF _t = Cash flow at time t
Time-weighted rate of return	$\mathbf{r}_{TW} = [(1 + r_i) \times (1 + r_2) \times \times (1 + r_N)]^{\frac{1}{N}} - 1$	r _N = Holding period return in year n
Annualized return	$\mathbf{r}_{annual} = (1 + r_{period})^c - 1$	R = Periodic return C = Number of periods in a year
Nominal rate of return	(1 + r) = (1 + r_{rF}) × (1 + π) × (1 + RP)	r_{rF} = Real risk-free rate of return π = Inflation RP = Risk premium
Real rate of return	(1 + \mathbf{r}_{real}) = (1 + \mathbf{r}_{rF}) × (1 + RP) = $\frac{(1 + r)}{(1 + \pi)}$	r _{rF} = Real risk-free rate of return π = Inflation RP = Risk premium
Population variance	$\boldsymbol{\sigma}^{2} = \frac{\sum_{i=1n}^{N} (X_{i} - \mu)^{2}}{N}$	X _i = Return for period i N = Total number of periods μ = Mean
Population standard deviation	$\sigma = \sqrt{\frac{\sum_{i=1n}^{N} (X_i - \mu)^2}{N}}$	X _i = Return for period i N = Total number of periods μ = Mean
Sample variance	$S^{2} = \frac{\sum_{i=1n}^{n} (x_{i} - \overline{x})^{2}}{n - 1}$	X _i = Return for period i <u>N</u> = Total number of periods X = Mean of n returns
Sample standard deviation	$\mathbf{s} = \sqrt{\frac{\sum_{i=1n}^{n} (X_i - \overline{x})^2}{n - 1}}$	X _i = Return for period i <u>N</u> = Total number of periods X = Mean of n returns

365

PORTFOLIO RISK AND RETURN: PART I

Covariance	$COV_{1,2} = \frac{\sum_{t=1}^{n} \{ [R_{t,1} - \overline{R_1}] [R_{t,2} - \overline{R_2}] \}}{n-1} = \rho_{1,2}\sigma_1\sigma_2$	Rt1 = Return on Asset 1in period tRt2 = Return on Asset 2in period t $ρ$ = Correlation \overline{R} = Mean of respective assets
Correlation	$\boldsymbol{\rho}_{xy} = \frac{\text{Cov}(r_{x'}, r_{y})}{\sigma_{x}\sigma_{y}}$	Cov (\mathbf{r}_x , \mathbf{r}_y) = The covariance of returns, \mathbf{r}_x and \mathbf{r}_y $\boldsymbol{\sigma}_x$ = Standard deviation of Asset x $\boldsymbol{\sigma}_y$ = Standard deviation of Asset y
Utility function	$\mathbf{U} = \mathbf{E}(\mathbf{r}) - \frac{1}{2} \mathbf{A} \sigma^2$	U = Utility of an investment E(R) = Expected return σ ² = Variance of the investment A = Risk aversion level
Portfolio return (Many risky assets)	$R_{p} = \sum_{i=1}^{N} w_{i}R_{i}$, $\sum_{i=1}^{N} W_{i} = 1$	\mathbf{R}_{i} = Return of asset i \mathbf{W}_{i} = Weight within the portfolio
Portfolio variance	$\sigma_{p}^{2} = \sum_{i, j=1}^{N} W_{i}W_{j}COV (R_{i}, R_{j})$	 w = Weights R = Returns COV (Ri, Rj) = Covariance of returns
Portfolio variance (Two-asset portfolio)	$\sigma_{p}^{2} = W_{1}^{2}\sigma_{1}^{2} + W_{2}^{2}\sigma_{2}^{2} + 2W_{1}W_{2} COV(R_{1}, R_{2})$	COV = Covariance of returns on R ₁ and R ₂ w ₁ = Portfolio weight invested in Asset 1 w ₂ = Portfolio weight invested in Asset 2
Portfolio standard deviation (Two-asset portfolio)	$\sigma_{p} = \sqrt{w_{1}^{2}\sigma_{1}^{2} + w_{2}^{2}\sigma_{2}^{2} + 2w_{1}w_{2}COV(R_{1}, R_{2})}$	
Portfolio return of two assets (when one asset is the risk-free asset)	$E(R_p) = W_1R_f + (1 - W_1)E(R_i)$	\mathbf{R}_{f} = Returns of respective asset \mathbf{R}_{i} = Returns of respective asset \mathbf{W}_{1} = Weight in asset 1 $1 - \mathbf{W}_{1} = \mathbf{W}_{2}$
Portfolio standard deviation of two assets (when one asset is the risk-free asset)	$\boldsymbol{\sigma}_{p} = \sqrt{w_{1}^{2}\sigma_{f}^{2} + (1 - w_{1})^{2}\sigma_{i}^{2} + 2w_{1}(1 - w_{1})\rho_{12}\sigma_{f}\sigma_{i}} = (1 - w_{1})\sigma_{i}$	 f = Risk-free asset i = Asset σ = Standard deviation w = Weigh

365 √

PORTFOLIO RISK AND RETURN: PART II

Capital Asset Pricing Model (CAPM)	E(Ri) = $R_{F} + \beta_{i} [E(R_{M}) - R_{F}]$	$ \begin{split} \beta_i &= \text{Return sensitivity of stock i} \\ & \text{to changes in the market return} \\ \textbf{E}(\textbf{R}_{M}) &= \text{Expected return on the market} \\ \textbf{E}(\textbf{R}_{M}) - \textbf{R}_{F} &= \text{Expected market risk premium} \\ \textbf{R}_{F} &= \text{Risk-free rate of interest} \end{split} $
Capital allocation line	$\mathbf{E(R_p)} = R_f + \left(\frac{E(R_M) - R_f}{\sigma_m}\right) \times \sigma_p$	$E(R_m)$ = Expected return of the market portfolio R_f = Risk-free rate of return σ_m = Standard deviation of the market portfolio σ_p = Standard deviation of the portfolio P
Expected return (Multifactor Model)	E(Ri) - R _f = $β_{11}$ × E(Factor 1) + $β_{12}$ × E(Facto $β_{1k}$ = Stock (Factor k)	r 2) + + $β_{ik}$ x E(Factor k) <i>i</i> 's sensitivity to changes in the k th factor = Expected risk premium for the k th factor
Beta of an asset	$\boldsymbol{\beta}_{i} = \frac{\text{Cov}(\text{R}_{i}, \text{R}_{m})}{\sigma_{m}^{2}} = \frac{\rho_{i, m} \sigma_{i} \sigma_{m}}{\sigma_{m}^{2}} = \frac{\rho_{i, m} \sigma_{i}}{\sigma_{m}}$	$\sigma = \text{Standard deviation}$ m = Market portfolio i = Asset portfolio $\frac{\rho_{i, m} \sigma_{i}}{\sigma_{m}} = \text{Correlation between i and m}$
Portfolio beta	$\boldsymbol{\beta}_{\mathbf{P}} = \sum_{i=1}^{n} w_i \beta_i \qquad \sum_{i=1}^{n} w_i = 1$	\mathbf{w}_{i} = Weight of stock i $\mathbf{\beta}_{i}$ = Beta of stock i
Sharpe ratio	Sharpe ratio = $\frac{R_p - R_f}{\sigma_p}$	 R_p = Portfolio return R_f = Risk-free rate of return σ_p = Standard deviation (volatility) of portfolio return
M² ratio	$\mathbf{M}^{2} \mathbf{ratio} = (\mathbf{R}_{p} - \mathbf{R}_{f}) \frac{\sigma_{m}}{\sigma_{p}} - (\mathbf{R}_{m} - \mathbf{R}_{f})$	$\begin{array}{l} R_{p} = \mbox{Return of portfolio P} \\ R_{m} = \mbox{Return of market portfolio} \\ R_{f} = \mbox{Risk-free rate of return} \\ \sigma_{m} = \mbox{Standard deviation of market portfolio} \\ \sigma_{p} = \mbox{Standard deviation of portfolio P} \end{array}$
Treynor ratio	Treynor ratio = $\frac{E(R_p) - R_f}{\beta_p}$	β _p = Portfolio beta R _p = Portfolio return R _f = Risk-free rate of return
Jensen's alpha	$\boldsymbol{\alpha}_{p} = \boldsymbol{R}_{p} - [\boldsymbol{R}_{f} + \boldsymbol{\beta}_{p} (\boldsymbol{R}_{m} - \boldsymbol{R}_{f})]$	\mathbf{R}_{p} = Return of portfolio P \mathbf{R}_{m} = Return of market portfolio \mathbf{R}_{f} = Risk-free rate of return $\mathbf{\beta}_{p}$ = Portfolio beta

Master the Finance Skills Necessary to Succeed. Now at 60% OFF!

Become an expert in financial reporting, accounting, analysis, or modeling with our **comprehensive training program**.

- Learn from industry-leading instructors and gain practical skills to advance your career.
- Build your knowledge with self-paced courses and enjoy the flexibility of online learning.
- Q Validate your skills with exams and certificates demonstrating your expertise to potential employers.
- Stand out in the job market with a strong resume created with our resume builder.

Save 60% on an annual plan from the online learning program that helped more than **2 million people** advance their careers.

Start learning now

30-day money-back guarantee

 $F_{0}(T) = S_{0}(1 + r)^{2}$

Email: team@365financialanalyst.com

