$F_{0}(1)=S_{2}(1+r)$

Portfolio Management

Cheat Sheets

- 365 V

Portfolio Management

PORTFOLIO MANAGEMENT: AN OVERVIEW

Diversification ratio

$$
\text { Diversification ratio }=\frac{\sigma \text { of equally weighted portfolio of } \mathrm{n} \text { securities }}{\sigma \text { of single security selected at random }}
$$

$\boldsymbol{\sigma}=$ Volatility (Standard deviation)

Net asset value per share

$$
\text { Net asset value per share }=\frac{\text { Fund Assets }- \text { Fund Liabilities }}{\text { Number of Shares Outstanding }}
$$

PORTFOLIO RISK AND RETURN: PART I

Holding Period Return
(HPR)
No cash flows

Holding Period Return (HPR)
Cash flows occur at the end of the period

$$
H P R=\frac{\text { Ending value }- \text { Beginning value }}{\text { Beginning value }}
$$

$$
H P R=\frac{\begin{array}{c}
\text { Ending } \\
\text { value }
\end{array} \begin{array}{c}
\text { Beginning } \\
\text { value }
\end{array}+\begin{array}{c}
\text { Cash flows } \\
\text { received }
\end{array}}{\text { Beginning value }}=\frac{P_{1}-P_{0}+D_{1}}{\text { Beginning value }}
$$

$$
H P R=\left[\left(1+R_{1}\right) \times\left(1+R_{2}\right)\right]-1
$$

$\mathbf{R}_{1}=$ Holding period return

$$
\text { in year } 1
$$

$\mathbf{R}_{\mathbf{2}}=$ Holding period return in year 2

Arithmetic mean return

$$
\bar{R}_{i}=\frac{R_{i 1}+R_{i 2}+\ldots+R_{i T-1}+R_{i T}}{T}=\frac{1}{T} \sum_{\mathrm{t}=1}^{\mathrm{T}} \mathrm{R}_{\mathrm{it}} \quad \begin{aligned}
& \overline{\mathbf{R}}_{\mathrm{i}}=\text { Arithmetic mean return } \\
& \mathbf{R}_{\mathrm{it}}=\text { Return in period } \mathrm{t} \\
& \mathrm{~T}^{\prime}=\text { Total number of periods }
\end{aligned}
$$

Geometric mean return

$$
\bar{R}_{\mathrm{Gi}}=\sqrt{\left(1+\mathrm{R}_{\mathrm{i} 1}\right) \times\left(1+\mathrm{R}_{\mathrm{i} 2}\right) \ldots \times\left(1+\mathrm{R}_{\mathrm{i}, \mathrm{~T}-1}\right) \times\left(1+\mathrm{R}_{\mathrm{i}, \mathrm{~T}}\right)}-1=\sqrt{\prod_{\mathrm{t}=1}^{\mathrm{T}}\left(1+\mathrm{R}_{\mathrm{it}}\right)-1}
$$

Portfolio Management

PORTFOLIO RISK AND RETURN: PART I

Internal Rate of Return (IRR)	$\sum_{t=0}^{N} \frac{C F_{t}}{(1+I R R)^{t}}=0$	$\mathbf{t}=$ Number of periods $\mathbf{C F}_{\mathbf{t}}=$ Cash flow at time \mathbf{t}
Time-weighted rate of return	$\mathbf{r}_{\mathrm{Tw}}=\left[\left(1+r_{\mathrm{i}}\right) \times\left(1+r_{2}\right) \times \ldots \times\left(1+r_{\mathrm{N}}\right)\right]^{\frac{1}{N}}-1$	$\mathbf{r}_{\mathrm{N}}=$ Holding period return in year \mathbf{n}
Annualized return	$\mathbf{r}_{\text {annual }}=\left(1+r_{\text {period }}\right)^{c}-1$	R = Periodic return C = Number of periods in a year
Nominal rate of return	$(1+r)=\left(1+r_{r F}\right) \times(1+\pi) \times(1+R P)$	$\begin{aligned} & \mathbf{r}_{\mathrm{rf}}=\text { Real risk-free rate of return } \\ & \pi=\text { Inflation } \\ & \mathrm{RP}=\text { Risk premium } \end{aligned}$
Real rate of return	$\left(1+r_{\text {real }}\right)=\left(1+r_{r F}\right) \times(1+R P)=\frac{(1+r)}{(1+\pi)}$	$\begin{aligned} & \mathbf{r}_{\mathrm{rf}}=\text { Real risk-free rate of return } \\ & \pi=\text { Inflation } \\ & \mathrm{RP}=\text { Risk premium } \end{aligned}$
Population variance	$\boldsymbol{\sigma}^{2}=\frac{\sum_{i=1 \ldots n}^{N}\left(X_{i}-\mu\right)^{2}}{N}$	$\mathbf{X}_{\mathrm{i}}=$ Return for period i $\mathbf{N}=$ Total number of periods $\boldsymbol{\mu}=$ Mean
Population standard deviation	$\sigma=\sqrt{\frac{\sum_{i=1, \ldots n}^{N}\left(X_{i}-\mu\right)^{2}}{N}}$	$\mathrm{X}_{\mathrm{i}}=$ Return for period i $\mathbf{N}=$ Total number of periods $\boldsymbol{\mu}=$ Mean
Sample variance	$S^{2}=\frac{\sum_{i=1 \ldots n}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}$	$\mathrm{X}_{\mathrm{i}}=$ Return for period i $\mathbf{N}=$ Total number of periods $\bar{X}=$ Mean of n returns
Sample standard deviation	$\mathbf{s}=\sqrt{\frac{\sum_{i=1 \ldots n}^{n}\left(X_{i}-\bar{x}\right)^{2}}{n-1}}$	$X_{i}=$ Return for period i $\mathrm{N}=$ Total number of periods $\overline{\mathrm{X}}=$ Mean of n returns

Portfolio Management

PORTFOLIO RISK AND RETURN: PART I

$\mathbf{R}_{\mathrm{t} 1}=$ Return on Asset 1

Covariance

$$
\operatorname{COV}_{1,2}=\frac{\sum_{t=1}^{n}\left\{\left[R_{t, 1}-\bar{R}_{1}\right]\left[R_{t, 2}-\bar{R}_{2}\right]\right\}}{n-1}=\rho_{1,2} \sigma_{1} \sigma_{2}
$$

in period \mathbf{t}
$\mathbf{R}_{\mathrm{t} 2}=$ Return on Asset 2 in period \mathbf{t}
$\rho=$ Correlation
$\overline{\mathbf{R}}=$ Mean of respective assets
$\operatorname{Cov}\left(\mathbf{r}_{x^{\prime}}, r_{y}\right)=$ The covariance of returns, r_{x} and r_{y}
$\boldsymbol{\sigma}_{\mathrm{x}}=$ Standard deviation of
Asset x
$\sigma_{\mathrm{y}}=$ Standard deviation of Asset y
$\mathbf{U}=$ Utility of an investment
Utility function

$$
\mathbf{U}=E(r)-\frac{1}{2} A \sigma^{2}
$$

Portfolio return

(Many risky assets)

$$
R_{p}=\sum_{i=1}^{N} w_{i} R_{i}, \sum_{i=1}^{N} w_{i}=1
$$

$$
\boldsymbol{\sigma}_{\mathrm{p}}^{2}=\sum_{i, j=1}^{N} w_{i} w_{j} \operatorname{COV}\left(R_{i}, R_{j}\right)
$$

$\mathbf{w}=$ Weights
R = Returns
COV (Ri, Rj) = Covariance of returns

COV = Covariance of returns
on R_{1} and R_{2}
$\mathbf{w}_{1}=$ Portfolio weight invested
in Asset 1
$\mathbf{w}_{2}=$ Portfolio weight invested in Asset 2

Portfolio standard

 deviation(Two-asset portfolio)

$$
\sigma_{\mathrm{p}}=\sqrt{\mathrm{w}_{1}^{2} \sigma_{1}^{2}+\mathrm{w}_{2}^{2} \sigma_{2}^{2}+2 \mathrm{w}_{1} \mathrm{w}_{2} \operatorname{COV}\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right)}
$$

Portfolio return of

two assets
(when one asset is the
risk-free asset)

$$
E\left(R_{p}\right)=w_{1} R_{f}+\left(1-w_{1}\right) E\left(R_{i}\right)
$$

Portfolio standard

deviation of two assets
(when one asset is the
risk-free asset)
$\mathbf{R}_{\mathrm{f}}=$ Returns of respective asset
$\mathrm{R}_{\mathrm{i}}=$ Returns of respective asset
$\mathbf{W}_{1}=$ Weight in asset 1
1- $w_{1}=w_{2}$
$\mathbf{f}=$ Risk-free asset
$\mathbf{i}=$ Asset
$\boldsymbol{\sigma}=$ Standard deviation
w = Weigh

Portfolio Management

PORTFOLIO RISK AND RETURN: PART II

Capital Asset Pricing Model (CAPM)	$\mathbf{E}(\mathrm{Ri})=\mathrm{R}_{F}+\beta_{i}\left[E\left(\mathrm{R}_{M}\right)-\mathrm{R}_{\mathrm{F}}\right]$	$\boldsymbol{\beta}_{\mathrm{i}}=$ Return sensitivity of stock i to changes in the market return $\mathbf{E}\left(\mathbf{R}_{M}\right)=$ Expected return on the market $\mathbf{E}\left(\mathbf{R}_{\mathrm{M}}\right)-\mathbf{R}_{\mathrm{F}}=$ Expected market risk premium $\mathbf{R}_{\mathbf{F}}=$ Risk-free rate of interest
Capital allocation line	$\mathbf{E}\left(\mathbf{R}_{p}\right)=R_{f}+\left(\frac{E\left(R_{M}\right)-R_{f}}{\sigma_{m}}\right) \times \sigma_{p}$	$\begin{aligned} & \mathbf{E}\left(\mathbf{R}_{\mathrm{m}}\right)=\text { Expected return of the market } \\ & \text { portfolio } \\ & \mathbf{R}_{\mathrm{f}}=\text { Risk-free rate of return } \\ & \sigma_{\mathrm{m}}=\text { Standard deviation of the market } \\ & \quad \text { portfolio } \\ & \sigma_{\mathrm{p}}=\text { Standard deviation of the portfolio } P \end{aligned}$
Expected return (Multifactor Model)	$\begin{array}{r} \mathbf{E}(\mathbf{R i})-\mathbf{R}_{\mathrm{f}}=\beta_{\mathrm{i} 1} \times \mathrm{E}(\text { Factor } 1)+\beta_{\mathrm{i} 2} \times \mathrm{E}(\text { Fact } \\ \beta_{i \mathrm{i}}=\text { Stocl } \\ \text { (Factor } \mathbf{k} \end{array}$	$\left.2)+\ldots+\beta_{\mathrm{ik}} \times \mathrm{E} \text { (Factor } \mathrm{k}\right)$ s sensitivity to changes in the $\mathrm{k}^{\text {th }}$ factor Expected risk premium for the $\mathrm{k}^{\text {th }}$ factor
Beta of an asset	$\boldsymbol{\beta}_{i}=\frac{\operatorname{Cov}\left(R_{i}, R_{m}\right)}{\sigma_{m}^{2}}=\frac{\rho_{i, m} \sigma_{i} \sigma_{m}}{\sigma_{m}^{2}}=\frac{\rho_{i, m} \sigma_{i}}{\sigma_{m}}$	$\sigma=$ Standard deviation m = Market portfolio $\mathbf{i}=$ Asset portfolio $\frac{\rho_{i, m} \sigma_{i}}{\sigma_{m}}=\text { Correlation between } i \text { and } m$
Portfolio beta	$\boldsymbol{\beta}_{\mathrm{p}}=\sum_{i=1}^{n} w_{i} \beta_{i} \quad \sum_{i=1}^{n} w_{i}=1$	$\begin{aligned} & \mathbf{w}_{\mathrm{i}}=\text { Weight of stock } \mathrm{i} \\ & \boldsymbol{\beta}_{\mathrm{i}}=\text { Beta of stock } \mathrm{i} \end{aligned}$
Sharpe ratio	$\text { Sharpe ratio }=\frac{R_{p}-R_{f}}{\sigma_{p}}$	$\mathbf{R}_{\mathrm{p}}=$ Portfolio return $\mathbf{R}_{f}=$ Risk-free rate of return $\boldsymbol{\sigma}_{\mathrm{p}}=$ Standard deviation (volatility) of portfolio return
M ${ }^{2}$ ratio	M^{2} ratio $=\left(R_{p}-R_{f}\right) \frac{\sigma_{m}}{\sigma_{p}}-\left(R_{m}-R_{f}\right)$	$\mathrm{R}_{\mathrm{p}}=$ Return of portfolio P $\mathbf{R}_{\mathrm{m}}=$ Return of market portfolio $\mathrm{R}_{\mathrm{f}}=$ Risk-free rate of return $\sigma_{\mathrm{m}}=$ Standard deviation of market portfolio $\boldsymbol{\sigma}_{\mathrm{p}}=$ Standard deviation of portfolio P
Treynor ratio	$\text { Treynor ratio }=\frac{E\left(R_{p}\right)-R_{f}}{\beta_{p}}$	$\boldsymbol{\beta}_{\mathrm{p}}=$ Portfolio beta $\mathbf{R}_{\mathrm{p}}=$ Portfolio return $\mathbf{R}_{\mathrm{f}}=$ Risk-free rate of return
Jensen's alpha	$\boldsymbol{a}_{p}=R_{p}-\left[R_{f}+\beta_{p}\left(R_{m}-R_{f}\right)\right]$	$\mathbf{R}_{\mathrm{p}}=$ Return of portfolio P $\mathbf{R}_{\mathrm{m}}=$ Return of market portfolio $\mathbf{R}_{\mathrm{f}}=$ Risk-free rate of return $\boldsymbol{\beta}_{\mathrm{p}}=$ Portfolio beta

Master the Finance Skills Necessary to Succeed. Now at 60\% OFF!

Become an expert in financial reporting, accounting, analysis, or modeling with our comprehensive training program.

Learn from industry-leading instructors and gain practical skills to advance your career.
(C) Build your knowledge with self-paced courses and enjoy the flexibility of online learning.
\& Validate your skills with exams and certificates demonstrating your expertise to potential employers.

固 Stand out in the job market with a strong resume created with our resume builder.

Save 60\% on an annual plan from the online learning program that helped more than $\mathbf{2}$ million people advance their careers.

Start learning now

Email: team@365financialanalyst.com

