$F_{a}(T) = S_{a}(1 + r)^{2}$

Quantitative Methods

Cheat Sheets

TIME VALUE OF MONEY

Effective Annual Rate (EAR)	Effective annual rate = $\left(1 + \frac{\text{Stated annual rate}}{m}\right)^m - 1$		
Single Cash Flow (Simplified formula)	$FV_{N} = PV \times (1 + r)^{N}$ $PV = \frac{FV_{N}}{(1 + r)^{N}}$	 r = Interest rate per period PV = Present value of the investment FV_N = Future value of the investment N periods from today 	
Investments paying interest more than once a year	$FV_{N} = PV \times \left(1 + \frac{r_{s}}{m}\right)^{mN}$ $PV = \frac{FV_{N}}{\left(1 + \frac{r_{s}}{m}\right)^{mN}}$	 rs = Stated annual interest rate m = Number of compounding periods per year N = Number of years 	
Future Value (FV) of an Investment with Continuous Compounding	$FV_N = PVe^{r_sN}$		
Ordinary Annuity	$FV_{N} = A \times \left[\frac{(1+r)^{N}-1}{r}\right]$ $PV = A \times \left[\frac{1-\frac{1}{(1+r)^{N}}}{r}\right]$	N = Number of time periods A = Annuity amount r = Interest rate per period	
	FV A _{Due} = FV A _{Ordinary} x (1 + r) = A x $\left[\frac{(1 + r)^{N} - 1}{r}\right]$ x (1 + r)		
Annuity Due	PV A _{Due} = FV A _{Ordinary} x (1 + r) = A x $\begin{bmatrix} 1 - 1 \\ -1 \end{bmatrix}$	$\frac{\frac{1}{(1+r)^{N}}}{r} x (1+r)$	
		 A = Annuity amount r = The interest rate per period corresponding to the frequency of annuity paments (for example, annual, quarterly, or monthly) N = Number of annuity payments 	

365 🗸

TIME VALUE OF MONEY

Present Value (PV) of a Perpetuity	$\mathbf{PV}_{\mathbf{Perpetuity}} = \frac{A}{r}$	A = Annuity amount	
Future value (FV) of a series of unequal cash flows	FV _N = Cash flow ₁ (1 + r) ¹ + Cash flow ₂ (1 + r) ² Cash flow _N (1 + r) ^N		
Net Present Value (NPV)	$\mathbf{NPV} = \sum_{t=0}^{N} \frac{CF_t}{(1+r)^t}$	<pre>CF_t = Expected net cash flow at time t N = Investment's projected life r = Discount rate or opportunity cost of capital</pre>	
Internal Rate of Return (IRR)	NPV = $CF_0 + \frac{CF_1}{(1 + IRR)^1} + \frac{CF_2}{(1 + IRR)^2} + + \frac{CF_N}{(1 + IRR)^N} = 0$		
Holding Period Return (HPR) No cash flows	HPR = Ending value - Beginning value Beginning value		
Holding Period Return (HPR) Cash flows occur at the end of the period	HPR = Ending Beginning Cash flore value value receiver Beginning value	$\frac{P_1 - P_0 + D_1}{Beginning value}$ $P_1 = Ending Value$ $P_0 = Beginning Value$ $D = Cash flow/dividend received$	
Yield on a Bank Discount Basis (BDY)	$\mathbf{r}_{BD} = \frac{D}{F} \times \frac{360}{t}$	 r_{BD} = Annualized yield on a bank discount basis D = Dollar discount, which is equal to the difference between the face value of the bill (F) and its purchase price (P₀) F = Face value of the T-bill t = Actual number of days remaining to maturity 	
Effective annual yield (EAY)	EAY = $(1 + HPR)^{\frac{360}{t}} - 1$	t = Time until maturity HPR = Holding Period Return	
Money market yield (CD equivalent yield)	Money market yield = HPR $\times \left(\frac{360}{t}\right)$	$=\frac{360 \times r_{BankDiscount}}{360 - (t \times r_{BankDiscount})}$	

STATISTICAL CONCEPTS AND MARKET RETURNS

Interval Width	Interval Width = Range k	 Range = Largest observation number Smallest Observation or number k = Number of desired intervals 	
Relative Frequency Formula	Relative frequency = Observations in data set		
Population Mean	$\mu = \frac{\sum_{i=1n}^{N} x_i}{N} = \frac{x_1 + x_2 + x_3 + + x_N}{N}$	 N = Number of observations in the entire population X_i = the <i>i</i>th observation 	
Sample Mean	$\overline{\mathbf{x}} = \frac{\sum_{i=1n}^{n} x_{i}}{n} = \frac{x_{1} + x_{2} + x_{3} + \dots + x_{n}}{n}$		
Geometric Mean	G = $\sqrt[n]{X1X2X3Xn}$	n = Number of observations	
Harmonic Mean	$\overline{\mathbf{x}}_{n} = \frac{n}{\sum_{i=1n}^{n} \left(\frac{1}{X_{i}}\right)}$		
Median for odd numbers	Median = $\left\{\frac{(n+1)}{2}\right\}$		
Median of even numbers	Median = $\left\{\frac{(n+2)}{2}\right\}$		
	Median = $\frac{n}{2}$		

STATISTICAL CONCEPTS AND MARKET RETURNS

Weighted Mean	$\overline{\mathbf{x}}_{w} = \sum_{i=1n}^{n} w_{i} x_{i}$	 w = Weights X = Observations Sum of all weights = 1
Portfolio Rate of Return	$\mathbf{r_{p}} = \mathbf{w_{a}}\mathbf{r_{a}} + \mathbf{w_{b}}\mathbf{r_{b}} + \mathbf{w_{c}}\mathbf{r_{c}} + + \mathbf{w_{n}}\mathbf{r_{n}}$	w = Weights r = Returns
Position of the Observation at a Given Percentile y	$L_{y} = \left\{ (n+1)\frac{y}{100} \right\}$	 y = The percentage point at which we are dividing the distribution L_y = The location (L) of the percentile (Py) in the array sorted in ascending order
Range	Range = Maximum value - Minimum value	
Mean Absolute Deviation	$MAD = \frac{\sum_{i=1n}^{n} x_i - \overline{x} }{n}$	 X = The sample mean n = Number of observations in the sample
Population Variance	$\sigma^2 = \frac{\sum_{i=1n}^{N} (x_i - \mu)^2}{N}$	μ = Population mean N = Size of the population
Population Standard Deviation	$\sigma = \sqrt{\frac{\sum_{i=1n}^{N} (x_i - \mu)^2}{N}}$	μ = Population mean N = Size of the population
Sample Variance	$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n - 1}$	 X = Sample mean n = Number of observations in the sample

STATISTICAL CONCEPTS AND MARKET RETURNS

Sample Standard Deviation	$\mathbf{s} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n - 1}}$	 X = Sample mean n = Number of observations in the sample
Semi-Variance	Semi-variance = $\frac{1}{n} \sum_{r_t \le Mean}^{n} (Mean - r_t)^2$	 n = Total number of observations below the mean r_t = Observed value
Chebyshev Inequality	Percentage of observations within <i>k</i> standard deviations > 1 - $\frac{1}{k^2}$ of the arithmetic mean	k = Number of standard deviations from the mean
Coefficient of Variation	$CV = \frac{S}{\overline{X}}$	s = Sample standard deviation $\overline{\mathbf{x}}$ = Sample mean
Sharpe Ratio	Sharpe Ratio = $\frac{R_p - R_f}{\sigma_p}$	\mathbf{R}_{p} = Mean return to the portfolio \mathbf{R}_{p} = Mean return to a risk-free asset $\boldsymbol{\sigma}_{p}$ = Standard deviation of return on the portfolio
Skewness	$\mathbf{s_{k}} = \left[\frac{n}{(n-1)(n-2)}\right] \times \frac{\sum_{i=1n}^{n} (x_{i} - \overline{x})^{3}}{s^{3}}$	 n = Number of observations in the sample s = Sample standard deviation
Kurtosis	$\mathbf{K}_{\mathbf{E}} = \left[\frac{n (n + 1)}{(n - 1)(n - 2)(n - 3)} \times \frac{\sum_{i=1n}^{n} (x_i - \overline{x})^4}{S^4}\right] - \frac{1}{2}$	<u>3 (n - 1)²</u> (n - 2)(n - 3)
		n = Sample size

s = Sample standard deviation

365√

PROBABILITY CONCEPTS

Odds FOR E	Odds FOR E = $\frac{P(E)}{1 - P(E)}$	E = Odds for event P(E) = Probability of event
Conditional Probability	$\mathbf{P}(\mathbf{A} \mid \mathbf{B}) = \frac{\mathbf{P}(\mathbf{A} \cap \mathbf{B})}{\mathbf{P}(\mathbf{B})}$	where P(B) ≠ 0
Additive Law (The Addition Rule)	P(A U B) = P(A) + P(B) - P(A ∩ B)	
The Multiplication Rule (Joint Probability)	P(A ∩ B) = P(A B) × P(B)	
The Total Probability Rule	$P(A) = P(A S_1) \times P(S_1) + P(A S_2) \times P(S_2) + + P(A S_n) \times P(S_n)$	S1, S2,, Sn are mutually exclusive and exhaustive scenarios or events
Expected Value	$E(X) = P(A)X_{A} + P(B)X_{B} + + P(n)X_{n}$	P(n) = Probability of an variable X _n = Value of the variable
Covariance	$\mathbf{COV}_{xy} = \frac{(x - \overline{x})(y - \overline{y})}{n - 1}$	 x = Value of x X = Mean of x values y = Value of y y = Means of y n = Total number of values
Correlation	$\boldsymbol{\rho} = \frac{\operatorname{cov}_{xy}}{\sigma_x \sigma_y}$	σ_x = Standard Deviation of x σ_y = Standard Deviation of y COV_{xy} = Covariance of x and y
Variance of a Random Variable	$\sigma^2 X = \sum_{k=1n}^{n} (x - E(x))^2 \times P(x)$	The sum is taken over all values of x for which p(x) > 0
Portfolio Expected Return	E(R_P) = E(w ₁ r ₁ + w ₂ r ₂ + w ₃ r ₃ + + w _n r _n)	w = Constant r = Random variable
Portfolio Variance	$Var(R_p) = E[(R_p - E(R_p)^2] = [w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + w_3^2 \sigma_3^2 + 2w_1 w_2 Cov(R_1 R_2) + 2w_2 w_3 Cov(R_2 R_3) + 2w_1 w_3 Cov(R_1 R_3)]$	R _p = Return on Portfolio
Bayes' Formula	$\mathbf{P}(\mathbf{A} \mid \mathbf{B}) = \frac{P(B \mid A) \times P(A)}{P(B)}$	
The Combination Formula	$\mathbf{nCr} = \binom{n}{c} = \frac{n!}{(n-r)! r!}$	n = Total objects r = Selected objects
The Permutation Formula	$\mathbf{nPr} = \frac{n!}{(n-r)!}$	

COMMON PROBABILITY DISTRIBUTIONS

The Binomial Probability Formula	$\mathbf{P(x)} = \frac{n!}{(n - x)! \ x!} \ p^{x} \times (1 - p)^{n - x}$	 n = Number of trials x = Up moves p^x = Probability of up moves (1 - p)^{n - x} = Probability of down moves
Binomial Random Variable	E(X) = np Variance = np(1 - p)	n = Number of trials p = Probability
For a Random Normal Variable X	90% confidence interval for X is \overline{x} - 1.65s; \overline{x} + 1.65s 95% confidence interval for X is \overline{x} - 1.96s; \overline{x} + 1.96s 99% confidence interval for X is \overline{x} - 2.58s; \overline{x} + 2.58s	s = Standard error 1.65 = Reliability factor x = Point estimate
Safety-First Ratio	$SF_{Ratio} = \left[\frac{E(R_{p}) - R_{L}}{\sigma_{p}}\right]$	$R_p = Portfolio Return$ $R_L = Threshold level$ $\sigma_p = Standard Deviation$
Continuously Compounded Rate of Return	$FV = PV \times e^{i \times t}$	 i = Interest rate t = Time In e = 1 e = The exponential function, equal to 2.71828

SAMPLING AND ESTIMATION

Sampling Error of the Mean	Sample Mean - Population Mean	
Standard Error of the Sample Mean (Known Population Variance)	$SE = \frac{\sigma}{\sqrt{n}}$	n = Number of samples σ = Standard deviation
Standard Error of the Sample Mean (Unknown Population Variance)	$SE = \frac{S}{\sqrt{n}}$	s = Standard deviation in unknown population's sample
Z-score	$Z = \frac{X - \mu}{\sigma}$	x = Observed value σ = Standard deviation μ = Population mean
Confidence Interval for Population Mean with z	$\overline{x} - Z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$; $\overline{x} + Z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$	$\frac{Z_{\alpha/2}}{x} = \text{Reliability factor}$ $\frac{Z_{\alpha/2}}{x} = \text{Mean of sample}$ $\sigma = \text{Standard deviation}$ n = Number of trials/size of the sample
Confidence Interval for Population Mean with t	$\overline{x} - t_{\frac{\alpha}{2}} \times \frac{s}{\sqrt{n}}$; $\overline{x} + t_{\frac{\alpha}{2}} \times \frac{s}{\sqrt{n}}$	t _{α/2} = Reliability factor n = Size of the sample s = Standard deviation
z or t-statistic?	 Z → known population, standard deviation σ, no matter the sample size t → unknown population, standard deviation s, and sample size below 30 Z → unknown population, standard deviation s, and sample size above 30 	

365*

HYPOTHESIS TESTING

Test Statistics: Population Mean	$\mathbf{z}_{\alpha} = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$; $\mathbf{t}_{n-1, \alpha} = \frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}}$	 t_{n-1}= t-statistic with n - 1 degrees of freedom (n is the sample size) x = Sample mean μ = Hypothesized value of the population mean s = Sample standard deviation
Test Statistics: Difference in Means - Sample Variances Assumed Equal (Independent samples)	$\mathbf{t}\text{-statistic} = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\left(\frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}\right)^{\frac{1}{2}}}$ $\mathbf{s}_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$	Number of degrees of freedom = = n ₁ + n ₂ - 2
Test Statistics: Difference in Means - Sample Variances Assumed Unequal (Independent samples)	$\mathbf{t\text{-statistic}} = \frac{(\overline{x}_{1} - \overline{x}_{2}) - (\mu_{1} - \mu_{2})}{\left(\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}\right)^{\frac{1}{2}}}$ $\frac{\text{degrees of}}{\text{freedom}} = \frac{\left(\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}\right)^{2}}{\left(\frac{S_{1}^{2}}{n_{1}}\right)^{2}} + \frac{\left(\frac{S_{2}^{2}}{n_{2}}\right)^{2}}{n_{2}}$	 S = Standard deviation of respective sample n = Total number of observations in the respective population
Test Statistics: Difference in Means - Paired Comparisons Test (Dependent samples)	$\mathbf{t} = \frac{\overline{d} - \mu_{d0}}{S_d}$, where $\overline{d} = \frac{1}{n} \sum_{i=1n}^{n} d_i$	degrees of freedom = n - 1 n = Number of paired observations d = Sample mean difference S _d = Standard error of d
Test Statistics: Variance Chi-square Test	$\chi^{2}_{n-1} = \frac{(n-1)s^{2}}{\sigma_{0}^{2}}$	degrees of freedom = n - 1 s^2 = Sample variance σ_0^2 = Hypothesized variance
Test Statistics: Variance F-Test	$\mathbf{F} = \frac{{S_1}^2}{{S_2}^2}$, where ${S_1}^2 > {S_2}^2$	degrees of freedom = $n_1 - 1$ and $n_2 - s_1^2$ = Larger sample variance s_2^2 = Smaller sample variance

365√

Master the Finance Skills Necessary to Succeed. Now at 60% OFF!

Become an expert in financial reporting, accounting, analysis, or modeling with our **comprehensive training program**.

- Learn from industry-leading instructors and gain practical skills to advance your career.
- Build your knowledge with self-paced courses and enjoy the flexibility of online learning.
- Q Validate your skills with exams and certificates demonstrating your expertise to potential employers.
- Stand out in the job market with a strong resume created with our resume builder.

Save 60% on an annual plan from the online learning program that helped more than **2 million people** advance their careers.

Start learning now

30-day money-back guarantee

 $F_{0}(T) = S_{0}(1 + r)^{2}$

Email: team@365financialanalyst.com

