$F_{d}(T)=S_{2}(1+r)$

Quantitative Methods

Cheat Sheets

- 365 V

Quantitative Methods

TIME VALUE OF MONEY

Effective Annual Rate
 (EAR)

Effective annual rate $=\left(1+\frac{\text { Stated annual rate }}{m}\right)^{m}-1$
$\mathrm{FV}_{\mathrm{N}}=\mathrm{PV} \times(1+r)^{\mathrm{N}}$
Single Cash Flow
(Simplified formula)
$\mathbf{P V}=\frac{\mathrm{FV}_{\mathrm{N}}}{(1+\mathrm{r})^{\mathrm{N}}}$
$\mathbf{r}=$ Interest rate per period
PV = Present value of the investment
$\mathrm{FV}_{\mathrm{N}}=$ Future value of the investment
N periods from today
$\mathbf{F} \mathbf{V}_{\mathrm{N}}=\mathrm{PV} \times\left(1+\frac{\mathrm{r}_{\mathrm{s}}}{\mathrm{m}}\right)^{\mathrm{mN}}$
Investments paying interest
more than once a year
$P V=\frac{F V_{N}}{\left(1+\frac{r_{s}}{m}\right)^{m N}}$
$\mathbf{r s}_{\mathrm{s}}=$ Stated annual interest rate
$\mathbf{m}=$ Number of compounding periods per year
$\mathrm{N}=$ Number of years

Future Value (FV) of an
Investment with Continuous $\quad \mathrm{FV}_{\mathrm{N}}=P V^{r_{S} N}$
Compounding

$$
\begin{array}{ll}
\mathbf{F V}_{\mathrm{N}}=A \times\left[\frac{(1+r)^{\mathrm{N}}-1}{r}\right] & \begin{array}{l}
\mathbf{N}=\text { Number of time periods } \\
\mathbf{A}=\text { Annuity amount } \\
\mathbf{r}=\text { Interest rate per period }
\end{array} \\
\text { PV }=A \times\left[\frac{1-\frac{1}{(1+r)^{\mathrm{N}}}}{r}\right] &
\end{array}
$$

Ordinary Annuity

Annuity Due
FV Adue $=$ FV Aordinary $\times(1+r)=A \times\left[\frac{(1+r)^{N}-1}{r}\right] \times(1+r)$

$$
\text { PV Adue }=\text { FV Aordinary } \times(1+r)=A \times\left[\frac{1-\frac{1}{(1+r)^{N}}}{r}\right] \times(1+r)
$$

A = Annuity amount
$\mathbf{r}=$ The interest rate per period corresponding to the frequency of annuity paments (for example, annual, quarterly, or monthly)
$\mathbf{N}=$ Number of annuity payments

Quantitative Methods

TIME VALUE OF MONEY

Present Value (PV) of
a Perpetuity
$P V_{\text {Perpetuity }}=\frac{A}{r}$
A = Annuity amount

Future value (FV) of a series
of unequal cash flows
$\mathbf{F V}_{N}=$ Cash $^{\text {flow }}(1+r)^{1}+$ Cash $_{1}$ flow $_{2}(1+r)^{2} \ldots$ Cash flow $_{N}(1+r)^{N}$

Net Present Value (NPV)
$\mathbf{N P V}=\sum_{t=0}^{N} \frac{\mathrm{CF} t}{(1+\mathrm{r})^{t}}$
$\mathbf{C F}_{\mathrm{t}}=$ Expected net cash flow at time t
$\mathbf{N}=$ Investment's projected life
$\mathbf{r}=$ Discount rate or opportunity cost of capital
Internal Rate of Return $\quad \quad N P V=\mathrm{CF}_{0}+\frac{\mathrm{CF}_{1}}{(1+\mathrm{IRR})^{1}}+\frac{\mathrm{CF}_{2}}{(1+\mathrm{IRR})^{2}}+\ldots+\frac{\mathrm{CF}}{\mathrm{N}}$
$(1+\mathrm{IRR})$

Holding Period Return (HPR)
No cash flows
$\mathbf{H P R}=\frac{\text { Ending value }- \text { Beginning value }}{\text { Beginning value }}$

Holding Period Return (HPR)
Cash flows occur at the end of the period
$\mathbf{P}_{1}=$ Ending Value
$\mathbf{P}_{0}=$ Beginning Value
D = Cash flow/dividend received
$\mathbf{r}_{\mathrm{BD}}=$ Annualized yield on a bank discount basis
D = Dollar discount, which is equal to the difference between the face value of the bill (F) and its purchase price $\left(\mathrm{P}_{0}\right)$
F = Face value of the T-bill
$\mathbf{t}=$ Actual number of days remaining to maturity
$\mathbf{t}=$ Time until maturity
HPR = Holding Period Return

Yield on a Bank Discount
Basis (BDY)

$$
r_{B D}=\frac{D}{F} \times \frac{360}{t}
$$

$E A Y=(1+H P R)^{\frac{360}{t}}-1$

Money market yield $=\operatorname{HPR} \times\left(\frac{360}{\mathrm{t}}\right)=\frac{360 \times r_{\text {BankDiscount }}}{360-\left(\mathrm{t} \times \mathrm{r}_{\text {BankDiscount }}\right)}$

Quantitative Methods

STATISTICAL CONCEPTS AND MARKET RETURNS

Interval Width

$$
\text { Interval Width }=\frac{\text { Range }}{\mathrm{k}}
$$

Range $=$ Largest observation number

- Smallest Observation or number
$\mathbf{k}=$ Number of desired intervals

Relative Frequency
Formula
Relative frequency $=\frac{\text { Interval frequency }}{\text { Observations in data set }}$

Population Mean

$\mathbf{N}=$ Number of observations in the entire population
$X_{i}=$ the $i^{\text {th }}$ observation

Sample Mean
$\overline{\mathbf{x}}=\frac{\sum_{i=1 \ldots n}^{n} x_{i}}{n}=\frac{x_{1}+x_{2}+x_{3}+\ldots+x_{n}}{n}$

Geometric Mean
$\mathbf{G}=\sqrt[n]{x_{1} x_{2} x_{3} \ldots x_{n}}$
$\mathbf{n}=$ Number of observations

Harmonic Mean
$\overline{\mathbf{x}}_{\mathrm{n}}=\frac{n}{\sum_{\mathrm{i}=1 \ldots \mathrm{n}}^{\mathrm{n}}\left(\frac{1}{x_{i}}\right)}$

Median for odd
numbers
Median $=\left\{\frac{(\mathrm{n}+1)}{2}\right\}$

Median $=\left\{\frac{(\mathrm{n}+2)}{2}\right\}$
Median of even
Median $=\frac{\mathrm{n}}{2}$

Quantitative Methods

STATISTICAL CONCEPTS AND MARKET RETURNS

Weighted Mean

$$
\bar{x}_{w}=\sum_{i=1 \ldots n}^{n} w_{i} x_{i}
$$

w = Weights

$$
r=\text { Returns }
$$

r = Returns
$\mathbf{y}=$ The percentage point at which we are dividing the distribution
$L_{y}=$ The location (L) of the percentile
(Py) in the array sorted in ascending order

Position of the Observation
at a Given Percentile y

$$
L_{y}=\left\{(n+1) \frac{y}{100}\right\}
$$

w = Weights
X = Observations
Sum of all weights = 1

Portfolio Rate of Return

$$
r_{p}=w_{a} r_{a}+w_{b} r_{b}+w_{c} r_{c}+\ldots+w_{n} r_{n}
$$

Range
Range $=$ Maximum value - Minimum value

Mean Absolute Deviation

X = The sample mean
$\mathbf{n}=$ Number of observations in the sample
$\boldsymbol{\mu}=$ Population mean
$\mathbf{N}=$ Size of the population

Population Standard
Deviation

$\mu=$ Population mean
$\mathbf{N}=$ Size of the population

Sample Variance

X = Sample mean
$\mathbf{n}=$ Number of observations in the sample

Quantitative Methods

STATISTICAL CONCEPTS AND MARKET RETURNS

Sample Standard Deviation
$s=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$

Semi-variance $=\frac{1}{n} \sum_{r_{t}<\text { Mean }}^{n}\left(\text { Mean }-r_{t}\right)^{2}$

Percentage of observations within k standard deviations $>1-\frac{1}{\mathrm{k}^{2}}$ of the arithmetic mean

X = Sample mean
$\mathbf{n}=$ Number of observations in the sample
$\mathbf{n}=$ Total number of observations below the mean
$r_{t}=$ Observed value
$\mathbf{k}=$ Number of standard deviations from the mean

Coefficient of Variation
$C V=\frac{S}{\bar{X}}$
$\mathbf{s}=$ Sample standard deviation
$\overline{\mathbf{x}}=$ Sample mean
Chebyshev Inequality

Sharpe Ratio
Sharpe Ratio $=\frac{R_{p}-R_{f}}{\sigma_{p}}$
$\mathbf{S}_{\mathbf{k}}=\left[\frac{n}{(n-1)(n-2)}\right] \times \frac{\sum_{i=1 \ldots n}^{n}\left(x_{i}-\bar{x}\right)^{3}}{s^{3}} \quad \begin{aligned} & \mathbf{n}=\begin{array}{l}\text { Number of observations in } \\ \text { the sample }\end{array} \\ & \mathbf{s}=\text { Sample standard deviation }\end{aligned}$

Kurtosis
$\mathbf{n}=$ Sample size
$\mathbf{s}=$ Sample standard deviation

Quantitative Methods

PROBABILITY CONCEPTS

Odds FOR E	$\text { Odds FOR } E=\frac{P(E)}{1-P(E)}$	E = Odds for event $\mathbf{P}(\mathbf{E})=$ Probability of event
Conditional Probability	$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$	where $\mathbf{P}(\mathbf{B}) \neq 0$
Additive Law (The Addition Rule)	$\mathbf{P}(\mathbf{A} \mathbf{U} \mathbf{B})=P(A)+P(B)-P(A \cap B)$	
The Multiplication Rule (Joint Probability)	$\mathbf{P}(\mathbf{A} \cap \mathrm{B})=P(A \mid B) \times P(B)$	
The Total Probability Rule	$\begin{aligned} P(A) & =P\left(A \mid S_{1}\right) \times P\left(S_{1}\right)+P\left(A \mid S_{2}\right) \times \\ & \times P\left(S_{2}\right)+\ldots+P\left(A \mid S_{n}\right) \times P\left(S_{n}\right) \end{aligned}$	$\mathbf{S 1}, \mathbf{S 2}, \ldots, \mathbf{S n}$ are mutually exclusive and exhaustive scenarios or events
Expected Value	$E(X)=P(A) X_{A}+P(B) X_{B}+\ldots+P(n) X_{n}$	$\mathbf{P}(\mathbf{n})=$ Probability of an variable $X_{n}=$ Value of the variable
Covariance	$\operatorname{CoV}_{x y}=\frac{(x-\bar{x})(y-\bar{y})}{n-1}$	$\begin{aligned} & \mathbf{x}=\text { Value of } x \\ & \bar{x}=\text { Mean of } x \text { values } \\ & \mathbf{y}=\text { Value of } y \\ & \bar{y}=\text { Means of } y \\ & \mathbf{n}=\text { Total number of values } \end{aligned}$
Correlation	$\boldsymbol{\rho}=\frac{\operatorname{cov}_{x y}}{\sigma_{x} \sigma_{y}}$	$\sigma_{\mathrm{x}}=$ Standard Deviation of x $\sigma_{y}=$ Standard Deviation of y COV $_{x y}=$ Covariance of x and y
Variance of a Random Variable	$\boldsymbol{\sigma}^{2} \mathbf{X}=\sum_{i=1}^{n}(x-E(x))^{2} x P(x)$	The sum is taken over all values of \mathbf{x} for which $\mathbf{p}(\mathbf{x})>\mathbf{0}$
Portfolio Expected Return	$\mathbf{E}\left(\mathrm{RP}^{\mathbf{P}}\right)=\mathrm{E}\left(\mathrm{w}_{1} r_{1}+w_{2} r_{2}+w_{3} r_{3}+\ldots+w_{n} r_{n}\right)$	$\begin{aligned} & \mathbf{w}=\text { Constant } \\ & \mathbf{r}=\text { Random variable } \end{aligned}$
Portfolio Variance	$\begin{aligned} & \operatorname{Var}\left(R_{p}\right)=E\left[\left(R_{p}-E\left(R_{p}\right)^{2}\right]=\left[w_{1}^{2} \sigma_{1}{ }^{2}+w_{2}^{2} \sigma_{2}^{2}+\right.\right. \\ & +w_{3}^{2} \sigma_{3}^{2}+2 w_{1} w_{2} \operatorname{Cov}\left(R_{1} R_{2}\right)+ \\ & \left.+2 w_{2} w_{3} \operatorname{Cov}\left(R_{2} R_{3}\right)+2 w_{1} w_{3} \operatorname{Cov}\left(R_{1} R_{3}\right)\right] \end{aligned}$	$\mathbf{R}_{\mathrm{p}}=$ Return on Portfolio
Bayes' Formula	$P(A \mid B)=\frac{P(B \mid A) \times P(A)}{P(B)}$	
The Combination Formula	$n C_{r}=\binom{n}{c}=\frac{n!}{(n-r)!r!}$	n = Total objects $r=$ Selected objects
The Permutation Formula	$n P_{r}=\frac{n!}{(n-r)!}$	

Quantitative Methods

COMMON PROBABILITY DISTRIBUTIONS

The Binomial Probability Formula	$P(x)=\frac{n!}{(n-x)!x!} p^{x} x(1-p)^{n-x}$	$\mathbf{n}=$ Number of trials $\mathbf{x}=$ Up moves $\mathbf{p}^{\mathbf{x}}=$ Probability of up moves (1-p) $)^{n-x}=$ Probability of down moves
Binomial Random Variable	$\begin{aligned} & E(X)=n p \\ & \text { Variance }=n p(1-p) \end{aligned}$	$\mathbf{n}=$ Number of trials p = Probability
For a Random Normal Variable X	90% confidence interval for X is $\bar{x}-1.65 \mathrm{~s} ; \bar{x}+1.65 s$ 95% confidence interval for X is $\bar{x}-1.96 \mathrm{~s} ; \bar{X}+1.96 \mathrm{~s}$ 99% confidence interval for X is $\bar{X}-2.58$; $; \bar{X}+2.58 s$	$\mathbf{s}=$ Standard error 1.65 = Reliability factor $\overline{\mathbf{x}}=$ Point estimate
Safety-First Ratio	SFRatio $=\left[\frac{E\left(R_{p}\right)-R_{L}}{\sigma_{p}}\right]$	$\mathrm{R}_{\mathrm{P}}=$ Portfolio Return $\mathbf{R}_{\mathrm{L}}=$ Threshold level $\boldsymbol{\sigma}_{\mathrm{p}}=$ Standard Deviation
Continuously Compounded Rate of Return	$\mathbf{F V}=P V \times e^{i \times t}$	$\begin{aligned} & \mathbf{i}=\text { Interest rate } \\ & \mathbf{t}=\text { Time } \\ & \text { In } \mathbf{e}=1 \\ & \mathbf{e}=\text { The exponential function, } \\ & \quad \text { equal to } 2.71828 \end{aligned}$

SAMPLING AND ESTIMATION

Sampling Error of the Mean	Sample Mean - Population Mean
Standard Error of the Sample Mean (Known Population Variance)	$\begin{array}{ll} \mathbf{S E}=\frac{\sigma}{\sqrt{n}} & \mathbf{n}=\text { Number of samples } \\ \boldsymbol{\sigma}=\text { Standard deviation } \end{array}$
Standard Error of the Sample Mean (Unknown Population Variance)	$\mathbf{S E}=\frac{\mathrm{S}}{\sqrt{\mathrm{n}}} \quad$$\mathbf{s}=$Standard deviation in unknown population's sample
Z-score	$\mathrm{Z}=\frac{\mathrm{x}-\mu}{\sigma} \quad \begin{aligned} & \mathbf{x}=\text { Observed value } \\ & \boldsymbol{\sigma}=\text { Standard deviation } \\ & \boldsymbol{\mu}=\text { Population mean } \end{aligned}$
Confidence Interval for Population Mean with z	$\bar{x}-Z_{\frac{a}{2}} \times \frac{\sigma}{\sqrt{n}} ; \bar{x}+Z_{\frac{a}{2}} \times \frac{\sigma}{\sqrt{n}} \quad$$Z_{a / 2}=$ Reliability factor $\overline{\mathbf{x}}=$ Mean of sample $\sigma=$ Standard deviation $n=$ Number of trials/size of the sample
Confidence Interval for Population Mean with t	$\bar{x}-t_{\frac{\alpha}{2}} \times \frac{s}{\sqrt{n}} ; \bar{x}+t_{\frac{\alpha}{2}} \times \frac{s}{\sqrt{n}} \quad \begin{aligned} & \mathbf{t}_{\alpha / 2}=\text { Reliability factor } \\ & \mathbf{n}=\text { Size of the sample } \\ & \mathbf{s}=\text { Standard deviation } \end{aligned}$
z or t-statistic?	$\mathbf{Z} \longrightarrow$ known population, standard deviation σ, no matter the sample size $\mathbf{t} \longrightarrow$ unknown population, standard deviation s, and sample size below 30 $\mathbf{Z} \longrightarrow$ unknown population, standard deviation s , and sample size above 30

Quantitative Methods

HYPOTHESIS TESTING

Test Statistics:
Population Mean

Test Statistics: Difference in Means - Sample Variances
Assumed Equal
(Independent samples)

Test Statistics: Difference in
Means - Sample Variances
Assumed Unequal
(Independent samples)
$\mathbf{z}_{\alpha}=\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} ; \mathbf{t}_{\mathrm{n}-1, \mathrm{a}}=\frac{\frac{\bar{X}-\mu}{\mathrm{s}}}{\frac{\sqrt{n}}{\sqrt{n}}}$
t-statistic $=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\left(\frac{S_{p}{ }^{2}}{n_{1}}+\frac{S_{p}{ }^{2}}{n_{2}}\right)^{\frac{1}{2}}}$
$\mathbf{s}_{\mathrm{p}}{ }^{2}=\frac{\left(\mathrm{n}_{1}-1\right) \mathrm{s}_{1}{ }^{2}+\left(\mathrm{n}_{2}-1\right) \mathrm{s}_{2}{ }^{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}-2}$
t-statistic $=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\left(\frac{s_{1}{ }^{2}}{n_{1}}+\frac{s_{2}{ }^{2}}{n_{2}}\right)^{\frac{1}{2}}}$
$\begin{aligned} & \text { degrees of } \\ & \text { freedom }\end{aligned}=\frac{\left(\frac{s_{1}{ }^{2}}{n_{1}}+\frac{s_{2}{ }^{2}}{n_{2}}\right)^{2}}{\frac{\left(\frac{s_{1}{ }^{2}}{n_{1}}\right)^{2}}{n_{1}}+\frac{\left(\frac{s_{2}{ }^{2}}{n_{2}}\right)^{2}}{n_{2}}}$
$\mathbf{t}_{\mathrm{n}-1}=\mathrm{t}$-statistic with $\mathrm{n}-1$ degrees of freedom (n is the sample size)
$\overline{\mathbf{x}}=$ Sample mean
$\boldsymbol{\mu}=$ Hypothesized value of the population mean
$\mathbf{s}=$ Sample standard deviation

Number of degrees of freedom = $=n_{1}+n_{2}-2$
(Dependent samples)
Test Statistics: Difference in
Means - Paired Comparisons
Test
(D)
$t=\frac{\bar{d}-\mu_{d 0}}{S d}$, where $\bar{d}=\frac{1}{n} \sum_{i=1 \ldots n}^{n} d_{i}$
degrees of freedom $=\mathrm{n}-1$
n = Number of paired observations
d = Sample mean difference
$\mathbf{S}_{\mathrm{d}}=$ Standard error of d

Test Statistics: Variance Chi-square Test
$X_{\mathrm{n}-1}^{2}=\frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\sigma_{0}^{2}}$
$\mathbf{F}=\frac{\mathrm{s}_{1}{ }^{2}}{\mathrm{~S}_{2}{ }^{2}}$, where $\mathrm{s}_{1}{ }^{2}>\mathrm{s}_{2}{ }^{2}$
$\mathbf{S}=$ Standard deviation of respective sample
$\mathbf{n}=$ Total number of observations in the respective population

Test Statistics: Variance
F-Test
degrees of freedom $=\mathrm{n}-1$
$\mathbf{s}^{\mathbf{2}}=$ Sample variance
$\sigma_{0}{ }^{2}=$ Hypothesized variance
degrees of freedom $=n_{1}-1$ and $n_{2}-1$
$\mathbf{s}_{1}{ }^{2}=$ Larger sample variance
$\mathbf{s}_{2}{ }^{2}=$ Smaller sample variance

Master the Finance Skills Necessary to Succeed. Now at 60\% OFF!

Become an expert in financial reporting, accounting, analysis, or modeling with our comprehensive training program.

Learn from industry-leading instructors and gain practical skills to advance your career.
(C) Build your knowledge with self-paced courses and enjoy the flexibility of online learning.
\& Validate your skills with exams and certificates demonstrating your expertise to potential employers.

贯 Stand out in the job market with a strong resume created with our resume builder.

Save 60\% on an annual plan from the online learning program that helped more than $\mathbf{2}$ million people advance their careers.

Start learning now

Email: team@365financialanalyst.com

